
Mécanique des fluides
Section de génie civil

TD 1 - Correction

Exercices

Exercice 1 Une grande plaque mobile est située entre deux grandes plaques
fixes (cf figure ci-dessous). Deux fluides newtoniens de viscosité µ1 = 0,02 Pa·s
et µ2 = 0,01 Pa·s sont contenus entre les plaques. Déterminer l’intensité et
la direction des contraintes sur chacune des parois quand la plaque cen-
trale mobile se déplace à une vitesse de u = 4 m/s parallèlement aux autres
plaques. Faire l’hypothèse que le profil de vitesse entre les plaques est li-
néaire.

Figure 1 – Cisaillement entre deux plaques.

Exercice 2 Déterminer le moment du couple nécessaire pour faire tourner
un cylindre vertical de diamètre 50 mm à une vitesse constante de ω =
30 rad/s à l’intérieur d’un cylindre de diamètre 50,2 mm. L’espace entre
les cylindres est rempli d’une huile de viscosité µ20 = 0,1 Pa·s à 20 ◦C. La
longueur des cylindres est h = 200 mm. Négliger les effets de bord et faire
l’hypothèse que le profil de vitesse entre les deux cylindres est linéaire. De
quel pourcentage le couple sur le cylindre intérieur varie si la température
de l’huile est augmentée jusqu’à 80 ◦C (µ80 = 0,008 Pa·s).

Exercice 3 Le caractère newtonien ou non newtonien d’un fluide est géné-
ralement déterminé de manière expérimentale en étudiant la contrainte de
cisaillement τ et le taux de cisaillement γ̇ . Afin de déterminer la viscosité
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Figure 2 – Principe du viscosimètre de Couette.

d’un échantillon de sang, on mesure la contrainte de cisaillement à diffé-
rents taux de cisaillement à l’aide d’un viscosimètre. À partir des données
obtenues, déterminer si le sang est un liquide newtonien ou non newto-
nien. Expliquez votre démarche.

τ [Pa] 0,04 0,06 0,12 0,18 0,30 0,52 1,12 2,10
du/ dy [s−1] 2,25 4,50 11,25 22,25 45,0 90,0 225 450

Exercice 4 Un insecte (6 pattes) de masse m = 10−5 kg marche sur l’eau.
Ses pattes sont de même longueur et reposent à plat sur la surface libre
du liquide. Quelle est la longueur minimale des pattes pour qu’il ne coule
pas (la tension de surface est γ = 72 mN/m pour de l’eau) ? On considérera
que la force due à la tension de surface agit verticalement et que la poussée
d’Archimède est négligeable.

Figure 3 – Insecte à la surface de l’eau.

Exercice 5 Une lame de rasoir évidée en son centre (périmètre extérieur
154 mm, périmètre intérieur 52 mm, masse 1,3 g) flotte à la surface de
l’eau (γ = 72 mN/m). Quel doit être l’angle de contact pour que la lame
flotte ? Que se passe-t-il si la lame n’est pas évidée ? On négligera la poussée
d’Archimède.

2



Figure 4 – Lame de rasoir flottant à la surface de l’eau.

Exercice 6 Un tube en verre vertical ouvert à ses deux extrémités est
plongé dans un bac d’eau à 20 ◦C. Quel doit être le rayon minimal du tube
afin que l’eau ne monte pas de plus de 1,0 mm?

Indications : on prendra un angle de contact θ = 0, γ = 72 mN/m.

Figure 5 – Tube capillaire.

Exercice 7 Un tube en verre de diamètre 3 mm ouvert à ses deux extré-
mités est plongé dans un bac de mercure liquide à 20 ◦C (γ = 0,485 N/m,
ρ = 13 546 kg/m3). Quelle va être la différence de hauteur entre le mercure
du tube et celui du bac?

Indications : l’angle de contact mercure/verre est de 130 ◦C.
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Corrections

Exercice 1 Dans un fluide newtonien, la contrainte de cisaillement est
égale au taux de cisaillement multiplié par la viscosité dynamique

τ = µ · γ̇ .

Le profil de vitesse étant supposé linéaire, le gradient de la vitesse s’écrit
du/ dy = u/h, on obtient donc

τ = µ · u
h

avec h la hauteur respective de chaque côté de la paroi. Cela donne donc :

τ1 = 0,02[Pa · s]
4
[
m · s−1

]
6 · 10−3 [m]

= 13,3[Pa]

τ2 = 0,01[Pa · s]
4
[
m · s−1

]
3 · 10−3 [m]

= 13,3[Pa]

La contrainte de cisaillement est la même dans tout le liquide cisaillé. Ce-
pendant le taux de cisaillement est supérieur dans la couche de liquide
inférieur (respectivement supérieur dans la couche de liquide supérieur),
mais l’épaisseur de liquide y est inférieur. La direction de la contrainte est
la même que celle du gradient de vitesse. Dans cet exercice, les contraintes
sont donc parallèles aux plaques.

Note : La contrainte de cisaillement au sein d’un fluide est généralement
définie comme étant la contrainte qu’une couche de fluide exerce sur la
couche qui est au-dessus, la couche de dessus ayant une vitesse plus grande.
Dans cette convention, la couche du dessous ralentit la couche du dessus.
La contrainte est alors négative et orientée dans le sens opposé au gradient
de vitesse.

Mais attention, si l’on parle de la contrainte de cisaillement que la plaque
en mouvement exerce sur le fluide, le sens de la contrainte est alors le même
que celui du gradient de vitesse.

Le liquide cisaillé exerce sur chacune des plaques entre lesquelles il est
confiné une force de cisaillement ayant la même direction que le gradient
de vitesse. Cette force est égale au produit de la contrainte de cisaillement
τ et de la surface de contact entre la plaque et le liquide.

Dans le cas de la plaque centrale (en mouvement) cette force s’oppose au
mouvement de la plaque. Il faut donc fournir une force dans le sens inverse
pour maintenir la plaque en mouvement (p. ex. tirer sur la plaque).

4



Dans le cas de la plaque latérale (immobile), cette force cherche à entraîner
la plaque dans le sens de la vitesse du fluide. Si la plaque latérale n’est pas
fixée à un socle, elle entrera en mouvement.

Dans ce type de problème, il est important de bien préciser si l’on parle de
la contrainte du fluide sur la plaque, ou de la contrainte de la plaque sur le
fluide. Ces deux contraintes ne diffèrent que par leur sens.

Exercice 2 Le profil de vitesse étant supposé linéaire, la contrainte de
cisaillement s’exprime ainsi :

τ = µ · v
d

= µ · ωri
d

[N ·m]

ou ri est le rayon intérieur et d est l’épaisseur de couche de fluide. La force
de cisaillement qu’exerce le fluide sur le cylindre intérieur s’obtient en mul-
tipliant la contrainte par la surface de contact :

F = 2πrihτ [N]

Cette force de cisaillement résulte du frottement du liquide sur toute la
surface du cylindre. Étant donné la géométrie du système, cette force trans-
met un couple sur l’axe du cylindre. Le moment du couple transmis sur
l’axe se calcule en intégrant sur la surface S du cylindre le moment qui ré-
sulte de l’action de la contrainte de cisaillement τ sur chaque élément de
surface infinitésimal ds = ri dθdh :

Mτ =
∫ ∫

S
riτ ds =

∫ ∫
S
riτri dθdh = r2

i τ

∫ 2π

0
dθ

∫ h

0
dh = r2

i τ2πh
[
N ·m−2

]
= 2πr2

i hµ ·
riω
d

[N ·m]

Mτ = 0,589[N ·m]
(1)

avec d = 0,1 mm l’épaisseur du fluide.

Le moteur doit donc transmettre au cylindre un couple C similaire, mais
orienté dans le sens inverse, pour assurer la rotation du cylindre.

D’après (1), le couple C varie linéairement avec la viscosité µ. On a donc :

∆C
C

=
∆µ

µ
=

0,1− 0,008
0,1

= 0,92[-]

Le couple varie de 92 % avec le changement de température.
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Exercice 3 Un fluide est dit newtonien lorsque la relation entre la contrainte
de cisaillement τ [Pa = N/m2] et le taux de cisaillement γ̇ [s−1] est linéaire.
Le rapport τ/γ̇ est appelé coefficient de viscosité dynamique et est noté
µ [Pa·s]. La viscosité dynamique d’un fluide newtonien ne dépend donc pas
du taux de cisaillent (c’est-à-dire de la vitesse de déformation). Le sang est
par conséquent un fluide non newtonien (sa viscosité dynamique diminue
avec le taux de cisaillement).

Exercice 4 En négligeant la poussée d’Archimède, il y a deux forces qui
s’exercent sur les pattes de l’insecte, son poids P⃗ = mg⃗ orienté vers le bas,
et la force résultant de la tension de surface F⃗s orientée vers le haut.

Le bilan des efforts sur l’insecte donne :

F⃗f→s +mg⃗ = 0

−lγcos(θ)−mg = 0

lγ −mg = 0

avec l la longueur de contact totale entre l’insecte.

Attention : On parle de la force du fluide sur le solide F⃗f→s = −lγcos(θ) =
lγe⃗y avec θ = π rad ou 180 ◦. Voir la figure ci-dessous. Le vecteur unitaire
e⃗y n’est pas représenté sur la figure mais est orienté vers le haut.
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La longueur de contact totale nécessaire pour que l’insecte flotte est donc
de :

l =
mg

γ
=

10−5 [kg] · 9,81
[
m · s−2

]
72 · 10−3

[
N ·m−1

] = 1,4[mm] (2)

Puisque qu’il y a 6 pattes au total et que sur chaque patte il y a 2 films qui
se forment, la longueur minimale d’une patte pour assurer la flottaison de
l’insecte est de 1,4/12 = 0,12 mm.

Exercice 5 Le bilan des forces sur la lame en négligeant la poussée d’Ar-
chimède est le suivant :

F⃗f→s +mg⃗ = 0,

− (le + li)γ cos(θ)−mg = 0.

Attention : On parle de la force du fluide sur le solide F⃗f→s = −lγcos(θ)e⃗y .
Voir la figure ci-dessous.

L’angle de contact lorsque la lame flotte est donc de :

cos(θ) = −
mg

γ (le + li)
= −

1,3 · 10−3 [kg] · 9,81
[
m · s−2

]
72 · 10−3

[
N ·m−1

]
· (0,154 + 0,052)[m]

= −0,86[-]

θ = 149,3◦.
(3)

Si la lame n’est pas évidée, l’équation (3) devient :

cos(θ) = −
mg

γ · le
= −

1,3 · 10−3 [kg] · 9,81
[
m · s−2

]
72 · 10−3

[
N ·m−1

]
· 0,154[m]

= −1,15[-]
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Ce qui est bien impossible. La lame ne peut alors pas flotter !

Note : l’angle de contact se dessine depuis l’interface gaz-liquide vers l’in-
terface liquide-solide.

Exercice 6 Bilan des efforts sur le ménisque :

F⃗s +mg⃗ = 0

2πrγ cosθ − ρπr2h|g | = 0
(4)

Donc, le rayon minimal pour que h < 1 est donné par :

r ≥
2γ cosθ
ρgh

≥
2 · 72 · 10−3

[
N ·m−1

]
· 1

103
[
kg ·m−3

]
· 9,81

[
m · s−2] · 10−3 [m]

= 1,47[cm]
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Exercice 7 La relation (4) donne la hauteur h dans le tube :

h =
2γ cosθ
ρgr

=
2 · 0,485

[
N ·m−1

]
· (−0,64)

13546
[
kg ·m−3

]
· 9,81

[
m · s−2] · 1,5 · 10−3 [m]

= −3,13[mm]

Le mercure s’abaisse de −3,13 mm quand on insère le tube en verre.
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